Combined experimental–numerical mode I fracture characterization of the pultruded composite bars

Author:

Smolnicki MichałORCID,Duda SzymonORCID,Zielonka PawełORCID,Stabla PawełORCID,Lesiuk GrzegorzORCID,Lopes Cristiane Caroline CamposORCID

Abstract

AbstractIn this paper, pultruded GFRP bars are investigated to determine their fracture properties. The double cantilever beam test (DCB) is used to assess fracture behavior under mode I loading conditions. However, due to the presence of the R-curve effect (variable fracture energy dependent on the length of the crack), it is necessary to introduce a nonstandard approach to determine fracture properties. The mixed experimental–numerical approach is proposed to deal with this issue. Numerical simulations were carried out in Simulia Abaqus, and with Python scripting it was possible to generate models and obtain R-curve for the material. The numerical model built based on the experimental results has very good agreement with it (force–displacement and delamination length–time characteristics) which allows the use of the mentioned model in the analysis of more complex structures. Acoustic emission analysis was introduced as an auxiliary technique. The delamination obtained from both the numerical model and the experiment complies with the registered acoustic emission events. The proposed method can be used in preparing a material model for other composite materials, which display the presence of the R-curve effect.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3