Inter-relationship between microstructure evolution and mechanical properties in inertia friction welded 8630 low-alloy steel

Author:

Banerjee AmborishORCID,Ntovas Michail,Da Silva Laurie,Rahimi Salaheddin,Wynne Bradley

Abstract

AbstractThe evolution of microstructure and mechanical properties in AISI 8630 low-alloy steel subjected to inertia friction welding (IFW) have been investigated. The effects of three critical process parameters, viz. rotational speed, friction and forge forces, during welding of tubular specimens were explored. The mechanical properties of these weld joints, including tensile and Charpy V-notch impact were studied for determining the optimum welding parameters. The weld joints exhibited higher yield strength, lower hardening capacity and ultimate tensile strength compared to base metal (BM). The maximum strength and ductility combination was achieved for the welds produced under a nominal weld speed of ~ 2900–3100 rpm, the highest friction force of ~ 680–720 kN, and the lowest axial forging load of ~ 560–600 kN. The measured hardness distribution depicted higher values for the weld zone (WZ) compared to the thermo-mechanically affected zone (TMAZ), heat-affected zone (HAZ) and BM, irrespective of the applied welding parameters. The substantial increase in the hardness of the WZ is due to the formation of microstructures that were dominated by martensite. The observed microstructural features, i.e. the fractions of martensite, bainite and ferrite, show that the temperature in the WZ and TMAZ was above Ac3, whereas that of the HAZ was below Ac1 during the IFW. The fracture surface of the tensile and impact-tested specimens exhibited the presence of dimples nucleating from the voids, thus indicating a ductile failure. EBSD maps of the WZ revealed the formation of subgrains inside the prior austenite grains, indicating the occurrence of continuous dynamic recrystallisation during the weld. Analysis of crystallographic texture indicated that the austenite microstructure (i.e. FCC) in both the WZ and TMAZ undergoes simple shear deformation during IFW.

Funder

Tier 1 members of AFRC

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3