The effect of air plasma cutting on the quality, structural transformations and changes in the chemical composition of structural steel

Author:

Górka JacekORCID

Abstract

AbstractThe article presents results of tests concerning the effect of technological parameters of the plasma arc cutting process (involving the use of air as plasma gas) on the quality of cut surfaces as well as on structural transformations and changes in the chemical composition of 14 mm-thick plates made of steel S235JR. The tests revealed that the adjustment of optimum parameters of the cutting process enabled the obtainment of cut surfaces representing quality class I in accordance with the ISO 9013 standard. Only the surfaces processed using the maximum cutting rates represented quality class II. The chemical composition analysis was performed using an ICXA 733 X-ray microanalyser (Jeol) equipped with an energy-dispersive spectrometer (EDS) and an ISIS 300 analytical system (OXFORD). The cut surfaces were observed and their characteristic areas were photographed using an X-ray microanalyser and the backscattered electrons (BSE) technique. The phase analysis was performed using a PHILIPS PW 1050 X’Change machine operated in the B–B (Bragg–Brentano) geometry. It was observed that the application of the air plasma cutting process led to the formation of an amorphous phase on the cut surface. The amorphous phase was characterised by a very high nitrogen content (of approximately 1.6%) and a hardness of 750 HV 0.2. The intense nitration resulted from the diffusion of nitrogen from the plasma gas. At the same time, the effect of air plasma arc gases on the liquid metal was responsible for the carburising of the cut surface (up to approximately 0.5%) and the burnout of alloying components (in accordance with the theory of the selective oxidation of chemical elements). The quality of the cut surfaces was primarily affected by the cutting rate. An increase in the cutting rate was accompanied by the deterioration of the geometric features of cut surfaces. In addition, higher cutting rates also translated into the significant reduction of the HAZ width and that of the size of the zone of chemical composition changes. The tests revealed that, in terms of the 14 mm-thick plates made of steel S235JR, the optimum cutting rates were restricted within the range of 600 mm/min to 1500 mm/min. The tests carried out made it possible to determine the influence of the active plasma gas (oxygen, nitrogen) both on changes in the chemical composition of the tested steel and on the quality of the cut surfaces obtained.

Funder

Silesian University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference22 articles.

1. Kirkpatrick I. Profile cutting—which metod? Weld Met Fabr. 2000;9:15–8.

2. Hidden S. Plasma arc cutting offers savings to concrete recycling facility. Weld J. 2006;10:46–51.

3. Nemchinsky V, Severance W. What we know and what we know not about plasma arc cutting. J Phys D Appl Phys. 2006;39:423–38.

4. Lamikiz A, Lopez L. CO2 laser cutting of advanced high strength steels AHSS. Appl Surf Sci. 2004;242:362–7.

5. Hidden S, Buhler B. The great debate: plasma or oxyfuel? Weld J. 2005;3:40–4.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3