Influence of copper content on the structure and properties of aluminium alloys

Author:

Płonka Bartłomiej,Żyłka KonradORCID,Remsak Krzysztof,Rajda Marek,Zdunek Joanna,Moszczyńska Dorota

Abstract

AbstractDesigning new aluminium alloys always requires an assessment of the influence of modified contents of the main alloying additions on the required properties for a specific application. The aim of this study was to develop a new alloy with a higher tensile strength than the tensile strength obtained in typical 6xxx series alloys, with a satisfactory hot extrusion ductility. The article presents the results of studies on the influence of copper additions, in three variants, on the structure and mechanical properties of extruded aluminium profiles in various heat treatment states. The base reference for the presented studies was the following aluminium alloys: AlMgSi (EN AW-6063) and AlCuMgMn (EN AW-2017). On this basis, three alloy variants with Cu contents of 2.5, 3.5 and 4.5 weight % were selected. These alloys were cast by vertical semi-continuous casting in the form of ingots with a diameter of 100 mm. Hot deformation studies were carried out in the process of co-extrusion on a semi-industrial line consisting of a horizontal 5 MN press together with auxiliary devices. The extruded profiles were free from defects that could have resulted from the process, such as overheating, cracks and blisters. The materials in the form of extruded profiles, in the heat treatment states T1 and T4, were characterised in terms of structure and mechanical properties. The variants with Cu contents of 2.5 wt% and 3.5 wt% had comparable structure and grain size, and the variant with 4.5 wt% Cu had a finer microstructure. For the studied alloys after heat treatment, higher the strength, higher the Cu content in the alloy, ranging from 445 to 543 MPa. It has been found that it is possible to develop modified aluminium alloys based on the 6xxx series with an increased copper addition (but still below the content typical for Al alloys of the 2xxx series) that will have a strength above 400 MPa. The first variant of the new alloy with a Cu content of 2.5 wt% meets the set goal and meets the requirements set at the beginning of the studies.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference20 articles.

1. https://www.world-aluminium.org/statistics/#linegraph, accessed 12.11.2021

2. Mroczka K, Wójcicka A, Kurtyka P. Aluminum alloy in different heat treatment conditions. Acta Metall Slovaca. 2012;18(2–3):82–91.

3. PN-EN 573–3:2019–12 Aluminium and aluminium alloys - Chemical composition and form of wrought products - Part 3: Chemical composition and form of products

4. Przybyłowicz K.: Metaloznawstwo, Wydawnictwo Naukowo-Techniczne, Warszawa 1994.

5. Martin JW Precipitation Hardening: Theory and Applications, Butterworth-Heinemann, 2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Corrosion fatigue crack growth model for aluminum alloys in jet fuel;Fatigue & Fracture of Engineering Materials & Structures;2024-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3