Abstract
AbstractResults of a study investigating a skew rolling process for elongated axisymmetric parts are presented. Despite the fact that the skew rolling technique for producing such parts was developed and implemented in the mid-twentieth century, there are no studies on this problem. The first part of this paper presents the results of FEM modelling of skew rolling stepped axles and shafts (solid and hollow). The FEM analysis was performed using the MSC Simufact Forming software. The numerical simulation involved the determination of metal flow patterns, the analysis of thermal parameters of the material during rolling, and the prediction of cracking by the Cockcroft-Latham ductile fracture criterion. Force parameters of rolling solid and hollow parts were also determined. The aim of the FEM analysis was to determine initial design assumptions and parameters for the development of the skew rolling mill. Later on in the paper, a design solution of a CNC skew rolling mill for rolling parts based on their envelope profile is proposed. FEM strength test results of a mill stand, obtained with MSC. NASTRAN, are presented. Finally, the performance test results of the constructed rolling mill are presented. The experiments involved rolling real stepped shafts that were modelled numerically. Obtained results show that the proposed skew rolling method has considerable potential. The designed and constructed rolling mill can be used to perform the rolling process according to the proposed method, with the tool and material kinematics being controlled based on the set parameters of a workpiece envelope.
Funder
Polish Ministry of Science and Higher Education
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献