Advances in friction stir welding of Ti6Al4V alloy complex geometries: T-butt joint with complete penetration

Author:

Ambrosio DaniloORCID,Wagner Vincent,Vivas Javier,Dessein Gilles,Aldanondo Egoitz,Cahuc Olivier

Abstract

AbstractIn this work, the friction stir weldability of Ti6Al4V T-joints has been investigated. Its aims are: (i) to study the influence of tool and welding parameters on weld quality, (ii) to assess the joints’ mechanical strength to foresee future applications, and (iii) to characterize Co-based FSW tools’ wear by following the wear during the tests. Welds’ defectivity is studied by cross-section macrographies analysis. Independently from welding parameters and tools, internal voids are avoided, and a suitable weldability window is identified. Microstructure observations have corroborated temperatures below the $$\beta $$ β -transus point even in the nugget zone, guaranteeing joints’ maximum mechanical strengths at 96% and 87% of the base material for UTS and Y, respectively. Contrarily, elongation at break is very low, without reaching 20% of the base material. The failure is linked to section thinning and kissing bond defects at the joints’ corners. Additionally, tool wear proved to be a critical issue while friction stir welding Ti6Al4V. The inner part of the shoulder is the most sensitive to wear. The consequent high wear rate might be a problem for mass production. The work established the pertinence of assembling complex geometries of Ti6Al4V using friction stir welding, considering weld quality and the mechanical strength achieved. However, critical factors such as section thinning, kissing bond, and tool wear must be carefully addressed to avoid joints’ low elongation at break and to guarantee their mechanical strength.

Funder

H2020 Marie Skłodowska-Curie Actions

Osaka University

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3