Abstract
AbstractThe study discusses the subject of a temperature change of TWIP steels during their deformation as a result of a conversion of the plastic deformation work into heat, based on a literature review and the authors' own research. The methods of measuring or modelling the changes of these temperatures are presented. It also points out that the heat generated during plastic deformation of TWIP steels has higher values than in the case of conventional steels, due to their higher yield stresses and limit strains. The heat has a very important effect on the microstructure of the deformed material and thus also on its properties. Its high increase can lead to e.g. a change of the deformation mechanism from twinning to dislocation glide, which is also connected with worse workability and thus also the energy consumption of the bodywork elements. On the basis of the selected literature works, the study determines the possible microstructural changes of TWIP steels related to the generated heat and demonstrates that materials with similar chemical compositions can behave differently at high deformation rates.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献