Modelling and parameter identification of steel–concrete composite beams in 3D rigid finite element method

Author:

Abramowicz Małgorzata,Berczyński Stefan,Wróblewski Tomasz

Abstract

AbstractThis study presents spatial vibration modelling of steel–concrete composite beams. Structures of this type are commonly used as elements of composite floors and primary carrying girders in bridge structures. Two-dimensional models used to date did not enable analysis of all eigenmodes, specifically torsional, flexural horizontal, and distortional. A discrete computational model was developed in the convention of the rigid finite element method, the so-called RFEM model. It was assumed that the concrete slab and the steel I-section would be modelled separately. This approach realistically reflects the actual performance of the connection, comprising studs connecting the concrete slab and the steel section. The model was used to analyse two steel–concrete composite beams with different connector spacings. The paper presents the results of experiments conducted on the two composite beams. Their dynamic characteristics, including frequency and vibration modes, were determined with impulse response methods. Based on experimental research, identification of connection parameters with substitute longitudinal moduli of elasticity of reinforced concrete was conducted. A comparison of experimental results with those calculated with the model confirmed their good agreement.

Funder

West Pomeranian University of Technology, Szczecin

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference36 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3