Prediction model of seasonality in the construction industry based on the accidentality phenomenon

Author:

Hoła BożenaORCID,Topolski MariuszORCID,Szer Iwona,Szer Jacek,Blazik-Borowa EwaORCID

Abstract

AbstractThe construction industry is an economic sector that is characterized by seasonality. Seasonal factors affect the volume of production, which in turn affects the accident rate. The aim of the research presented in the article was to develop a model for predicting the number of people injured in occupational accidents in the construction industry. Based on the analysis of statistical data and previous studies, the occurrence of certain regularities of the accidentality phenomenon was found, namely the long-term trend over many years, as well as seasonality and cyclicality over the course of a year. The found regularities were the basis for the assumptions that were made for the construction of the model. A mathematical model was built in the non-linear regression dimension. The model was validated by comparing the results of prediction errors generated by the developed model with the results of prediction errors generated by other known models, such as ARIMA, SARIMA, linear and polynomial models, which take into account the seasonality of the phenomenon. The constructed model enables the number of people injured in accidents in the construction industry in selected months of future years to be predicted with high accuracy. The obtained results can be the basis for making appropriate decisions regarding preventive and prophylactic measures in the construction industry. Commonly known mathematical tools available in the STATISTICA package were used to solve the given task.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3