Comprehensive evaluation of early-age hydration and compressive strength development in seawater-mixed binary and ternary cementitious systems

Author:

Rathnarajan SundarORCID,Cendrowski KrzysztofORCID,Sibera Daniel,Sikora PawelORCID

Abstract

AbstractSeawater-mixed concrete (SWC) is a proposed solution for catering to the needs of developing nations facing extremely severe water stress. Recent research works advocate the feasibility of producing SWC by adding supplementary cementitious materials (SCMs) and alternative reinforcements without reducing the engineering properties of the same. However, limited information is available for optimising the type and amount of SCMs in binary and ternary blended SW-mixed cementitious systems for achieving desirable strength development and early-age hydration. A comprehensive study to understand the evolution of heat of hydration and strength up to 28 days was conducted on 31 binder compositions mixed with both fresh water (FW) and seawater (SW). Fly ash, slag, metakaolin, and limestone are the supplementary cementitious materials used with CEM I as a primary binder at a replacement level between 10 and 70%. Isothermal calorimetry results revealed an increase in total heat of hydration and a reduction in setting time with SW-mixed cement pastes compared to their FW-mixed counterparts. Similarly, a significant increase in strength between 0 and 50% was observed in SW-mixed cement pastes. Suitable binder combinations showing an increase in compressive strength and not a significant reduction in strength compared to the CEM I reference mix were identified using the strength improvement factor approach. Binary and ternary blended cementitious, consisting of fly ash, slag, and metakaolin at different replacement levels, are amongst the chosen binder combinations.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in using seawater in slag-containing cement systems;Journal of Building Engineering;2024-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3