Heat treatment of bimetals produced by selective laser melting of MS1 maraging steel on conventionally produced 42SiCr martensitic steel

Author:

Kučerová LudmilaORCID,Jeníček ŠtěpánORCID,Zetková IvanaORCID,Burdová KarolínaORCID

Abstract

AbstractOne approach to producing hybrid bimetallic parts is to additively manufacture a new material onto a conventionally manufactured base material. This technique can expand the potential applications of additive manufacturing and offer new solutions for the engineering design of hybrid parts. In this work, laser powder bed fusion was used to deposit MS1 maraging steel on a conventionally produced (cast and hot-rolled) 42SiCr martensitic steel base material. Despite the profoundly different chemical compositions and hardening behaviours of these materials, their yield and ultimate tensile strengths in solution-annealed and hardened conditions are quite similar. Various heat treatments were performed to optimise the mechanical properties of the resulting hybrid part. The highest yield strength of 1400 MPa and tensile strength of 1483 MPa was achieved with a post-processing heat treatment which consisted of annealing at 900 °C for 25 min followed by water quenching and subsequent very short tempering at 490 °C. In the tensile tests, all the hybrid parts, regardless of heat treatment parameters, fractured within the base material and neither in the joint nor in the adjacent heat-affected zone. The interface areas and the microstructures of both materials were documented in detail in the as-built state and also after the heat treatment.

Funder

Ministerstvo Školství, Mládeže a Tělovýchovy

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3