Abstract
Abstract
Objectives
With generation times of less than 10 min under optimal conditions, the halophilic Vibrio natriegens is the fastest growing non-pathogenic bacterium isolated so far. The availability of the full genome and genetic engineering tools and its ability to utilize a wide range of carbon sources make V. natriegens an attractive host for biotechnological production processes. However, high-cell-density cultivations, which are desired at industrial-scale have not been described so far.
Results
In this study we report fed-batch cultivations of V. natriegens in deep-well plates and lab-scale bioreactor cultivations at different temperatures in mineral salt medium (MSM). Upon switching from exponential glucose to constant glucose-feeding cell death was induced. Initial NaCl concentrations of 15–18 g L−1 and a temperature reduction from 37 to 30 °C had a positive effect on cell growth. The maximal growth rate in MSM with glucose was 1.36 h−1 with a specific oxygen uptake rate of 22 mmol gCDW−1 h−1. High biomass yields of up to 55 g L−1 after only 12 h were reached.
Conclusions
The shown fed-batch strategies demonstrate the potential of V. natriegens as a strong producer in industrial biotechnology.
Funder
Technische Universität Berlin
Publisher
Springer Science and Business Media LLC
Subject
General Medicine,Biotechnology,Bioengineering,Applied Microbiology and Biotechnology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献