Listeria monocytogenes is a solvent tolerant organism secreting a solvent stable lipase: potential biotechnological applications

Author:

Priyanka Priyanka,Kinsella Gemma K.ORCID,Henehan Gary T.ORCID,Ryan Barry J.ORCID

Abstract

Abstract Purpose The emerging biobased economy will require robust, adaptable, organisms for the production and processing of biomaterials as well as for bioremediation. Recently, the search for solvent tolerant organisms and solvent tolerant enzymes has intensified. Resilient organisms secreting solvent stable lipases are of particular interest for biotechnological applications. Methods Screening of soil samples for lipase-producing organisms was carried out on Rhodamine B plates. The most productive lipase-producing organisms were further screened for their resistance to solvents commonly used in biotechnological applications. Results In the course of screening, one of the isolated organisms that exhibited extracellular lipase activity, was identified as the human pathogen Listeria monocytogenes through 16S rRNA sequencing. Further exploration revealed that this organism was resistant to solvents ranging from log P − 0.81 to 4.0. Moreover, in the presence of these solvents, L. monocytogenes secreted an extracellular, solvent tolerant, lipase activity. This lipase retained approximately 80% activity when incubated in 30% (v/v) methanol for 24 h. Conclusion These findings identify L. monocytogenes as a potentially useful organism for biotechnological applications. However, the fact that Listeria is a pathogen is problematic and it will require the use of non-pathogenic or attenuated Listeria strains for practical applications. Nonetheless, the ability to adapt to rapidly changing environmental conditions, to grow at low temperatures, to resist solvents and to secrete an extracellular solvent tolerant lipase are unique and highly useful characteristics. The potential application of L. monocytogenes in wastewater bioremediation and plastics degradation is discussed.

Funder

Dublin Institute of Technology

Technological University Dublin

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Biotechnology,Bioengineering,Applied Microbiology and Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3