Differentiation, maturation, and collection of THP-1-derived dendritic cells based on a PEG hydrogel culture platform

Author:

Choi Jaeho,Ki Chang SeokORCID

Abstract

Abstract Purpose Dendritic cell (DC) is a spearhead responsible for immune response and surrounded by extracellular matrix in three-dimensional (3D) tissue. Nevertheless, conventional DC culture has relied on suspension or two-dimensional (2D) tissue culture plate (TCP)-based culture system. This culture condition often fails to recapitulate the physiological behavior of DC in real tissue. In this work, the effect of culture condition on DC physiology was explored with varying 3D hydrogel property (i.e., degradability, adhesion, and stiffness). In particular, DC differentiation and maturation in 3D were evaluated comparing the conventional TCP-based culture condition. Method THP-1 cells were encapsulated in poly(ethylene glycol) (PEG) hydrogel via thiol-ene photocrosslinking with non-degradable or proteolytically degradable peptide crosslinker. Hydrogel stiffness was manipulated by controlling the concentration of crosslinker. The metabolic activities and cytotoxicity of the encapsulated cells were measured by resazurin and Live/Dead assays, respectively. Cell harvesting was conducted via enzymatic degradation using α-chymotrypsin, and differentiation and maturation of the liberated DCs were evaluated by quantitative polymerase chain reaction and flow cytometry. Results THP-1 cells well proliferated in the soft degradable hydrogel with a higher metabolic activity. However, the stiff matrix inhibited cell growth in 3D. The gene expression assay indicated that the 3D hydrogel condition was superior to 2D culture in terms of differentiation and maturation of DC. Interestingly, the stiffness of matrix was important factor in DC function. In the stiff hydrogel, the expression levels of differentiation and maturation markers were higher compared to the low stiffness hydrogel. The mature DCs caged in the hydrogel matrix were harvested after short enzymatic digestion of hydrogel and the liberated cells had over 90% viability. The flow cytometric result revealed that the proportion of CD80 + /CD86 + cells from the stiff hydrogel was relatively higher than cells either from 2D or soft hydrogel in 3D. Conclusion The collected evidence indicated that the proteolytically degradable PEG hydrogel matrix promoted DC differentiation and maturation. In addition, the matrix stiffness control could manipulate the marker expressions of differentiation and maturation. Particularly, the mature DC was successfully collected from the hydrogel matrix. These results highlighted the PEG hydrogel-based DC culture might be a useful tool for potential DC-based immunotherapies.

Funder

Ministry of Education

Ministry of Science and ICT

Seoul National University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3