Novel Approaches Guiding the Future of Spinal Biologics for Bone Regeneration

Author:

Phan Eileen N.ORCID,Hsu Wellington K.

Abstract

Abstract Purpose of Review Despite the continued growth of spine fusion procedures, the ideal material for bone regeneration remains unclear. Current bone graft substitutes and extenders in use such as exogenous BMP-2 or demineralized bone matrix and hydroxyapatite either have serious complications associated with use or lead to clinically significant rates of non-union. The introduction of nanotechnology and 3D printing to regenerative medicine facilitates the development of safer and more efficacious bone regenerative scaffolds that present solutions to these problems. Many researchers in orthopedics recognize the importance of lowering the dose of recombinant growth factors like BMP-2 to avoid the complications associated with its normal required supraphysiologic dosing to achieve high rates of fusion in spine surgery. Recent Findings Recent iterations of bioactive scaffolds have moved towards peptide amphiphiles that bind endogenous osteoinductive growth factor sources at the site of implantation. These molecules have been shown to provide a highly fluid, natural mimetic of natural extracellular matrix to achieve 100% fusion rates at 10–100 times lower doses of BMP-2 relative to controls in pre-clinical animal posterolateral fusion models. Alternative approaches to bone regeneration include the combination of existing natural growth factor sources like human bone combined with bioactive, biocompatible components like hydroxyapatite using 3D-printing technologies. Their elastomeric, 3D-printed scaffolds demonstrate an optimal safety profile and high rates of fusion (~92%) in the rat posterolateral fusion model. Summary Bioactive peptide amphiphiles and developments in 3D printing offer the promising future of a recombinant growth factor- free bone graft substitute with similar efficacy but improved safety profiles compared to existing bone graft substitutes.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3