The Influence of Reverse Total Shoulder Arthroplasty Implant Design on Biomechanics

Author:

Cogan Charles J.ORCID,Ho Jason C.,Entezari Vahid,Iannotti Joseph P.,Ricchetti Eric T.

Abstract

Abstract Purpose of Review As reverse total shoulder arthroplasty indications have expanded and the incidence of its use has increased, developments in implant design have been a critical component of its success. The purpose of this review is to highlight the recent literature regarding the effect of implant design on reverse total shoulder arthroplasty biomechanics. Recent Findings Implant design for reverse total shoulder arthroplasty has evolved considerably from the modern design developed by Paul Grammont. The Grammont design had a medialized center of rotation and distalized humerus resulting from a 155° humeral neck shaft angle. These changes intended to decrease the forces on the glenoid component, thereby decreasing the risk for implant loosening and improving the deltoid moment arm. However, these features also led to scapular notching. The Grammont design has been modified over the last 20 years to increase the lateral offset of the glenosphere and decrease the prosthetic humeral neck shaft angle to 135°. These changes were made to optimize functional range of motion while minimizing scapular notching and improving active external rotation strength. Lastly, the introduction of preoperative planning and patient-specific instrumentation has improved surgeon ability to accurately place implants and optimize impingement-free range of motion. Summary Success and durability of the reverse total shoulder arthroplasty has been contingent upon changes in implant design, starting with the Grammont-style prosthesis. Current humeral and glenoid implant designs vary in parameters such as humeral and glenoid offset, humeral tray design, liner thickness, and neck-shaft angle. A better understanding of the biomechanical implications of these design parameters will allow us to optimize shoulder function and minimize implant-related complications after reverse total shoulder arthroplasty.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3