Central auditory deficits associated with genetic forms of peripheral deafness

Author:

Michalski NicolasORCID,Petit ChristineORCID

Abstract

AbstractSince the 1990s, the study of inherited hearing disorders, mostly those detected at birth, in the prelingual period or in young adults, has led to the identification of their causal genes. The genes responsible for more than 140 isolated (non-syndromic) and about 400 syndromic forms of deafness have already been discovered. Studies of mouse models of these monogenic forms of deafness have provided considerable insight into the molecular mechanisms of hearing, particularly those involved in the development and/or physiology of the auditory sensory organ, the cochlea. In parallel, studies of these models have also made it possible to decipher the pathophysiological mechanisms underlying hearing impairment. This has led a number of laboratories to investigate the potential of gene therapy for curing these forms of deafness. Proof-of-concept has now been obtained for the treatment of several forms of deafness in mouse models, paving the way for clinical trials of cochlear gene therapy in patients in the near future. Nevertheless, peripheral deafness may also be associated with central auditory dysfunctions and may extend well beyond the auditory system itself, as a consequence of alterations to the encoded sensory inputs or involvement of the causal deafness genes in the development and/or functioning of central auditory circuits. Investigating the diversity, causes and underlying mechanisms of these central dysfunctions, the ways in which they could impede the expected benefits of hearing restoration by peripheral gene therapy, and determining how these problems could be remedied is becoming a research field in its own right. Here, we provide an overview of the current knowledge about the central deficits associated with genetic forms of deafness.

Funder

Agence Nationale pour la Recherche

LHW

Fondation pour l'Audition

Royal National Institute for Deaf People

Alzheimer’s Research UK

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3