Delineation of phenotypes and genotypes related to cohesin structural protein RAD21
-
Published:2020-03-19
Issue:5
Volume:139
Page:575-592
-
ISSN:0340-6717
-
Container-title:Human Genetics
-
language:en
-
Short-container-title:Hum Genet
Author:
Krab Lianne C.ORCID, Marcos-Alcalde IñigoORCID, Assaf Melissa, Balasubramanian MeenaORCID, Andersen Janne Bayer, Bisgaard Anne-MarieORCID, Fitzpatrick David R., Gudmundsson SannaORCID, Huisman Sylvia A.ORCID, Kalayci Tugba, Maas Saskia M., Martinez FranciscoORCID, McKee ShaneORCID, Menke Leonie A.ORCID, Mulder Paul A.ORCID, Murch Oliver D., Parker Michael, Pie Juan, Ramos Feliciano J.ORCID, Rieubland Claudine, Rosenfeld Mokry Jill A.ORCID, Scarano Emanuela, Shinawi MarwanORCID, Gómez-Puertas PaulinoORCID, Tümer ZeynepORCID, Hennekam Raoul C.ORCID
Abstract
AbstractRAD21 encodes a key component of the cohesin complex, and variants in RAD21 have been associated with Cornelia de Lange Syndrome (CdLS). Limited information on phenotypes attributable to RAD21 variants and genotype–phenotype relationships is currently published. We gathered a series of 49 individuals from 33 families with RAD21 alterations [24 different intragenic sequence variants (2 recurrent), 7 unique microdeletions], including 24 hitherto unpublished cases. We evaluated consequences of 12 intragenic variants by protein modelling and molecular dynamic studies. Full clinical information was available for 29 individuals. Their phenotype is an attenuated CdLS phenotype compared to that caused by variants in NIPBL or SMC1A for facial morphology, limb anomalies, and especially for cognition and behavior. In the 20 individuals with limited clinical information, additional phenotypes include Mungan syndrome (in patients with biallelic variants) and holoprosencephaly, with or without CdLS characteristics. We describe several additional cases with phenotypes including sclerocornea, in which involvement of the RAD21 variant is uncertain. Variants were frequently familial, and genotype–phenotype analyses demonstrated striking interfamilial and intrafamilial variability. Careful phenotyping is essential in interpreting consequences of RAD21 variants, and protein modeling and dynamics can be helpful in determining pathogenicity. The current study should be helpful when counseling families with a RAD21 variation.
Funder
Spanish Ministry of Science Spanish Ministery of Science JPIAMR-VRI
Publisher
Springer Science and Business Media LLC
Subject
Genetics(clinical),Genetics
Reference52 articles.
1. Amanchy R, Kandasamy K, Mathivanan S, Periaswamy B, Reddy R, Yoon WH, Joore J, Beer MA, Cope L, Pandey A (2011) Identification of novel phosphorylation motifs through an integrative computational and experimental analysis of the human phosphoproteome. J Proteomics Bioinform 4(2):22–35. https://doi.org/10.4172/jpb.1000163 2. Ansari M, Poke G, Ferry Q, Williamson K, Aldridge R, Meynert AM, Bengani H, Chan CY, Kayserili H, Avci S, Hennekam RC, Lampe AK, Redeker E, Homfray T, Ross A, Falkenberg Smeland M, Mansour S, Parker MJ, Cook JA, Splitt M, Fisher RB, Fryer A, Magee AC, Wilkie A, Barnicoat A, Brady AF, Cooper NS, Mercer C, Deshpande C, Bennett CP, Pilz DT, Ruddy D, Cilliers D, Johnson DS, Josifova D, Rosser E, Thompson EM, Wakeling E, Kinning E, Stewart F, Flinter F, Girisha KM, Cox H, Firth HV, Kingston H, Wee JS, Hurst JA, Clayton-Smith J, Tolmie J, Vogt J, Tatton-Brown K, Chandler K, Prescott K, Wilson L, Behnam M, McEntagart M, Davidson R, Lynch SA, Sisodiya S, Mehta SG, McKee SA, Mohammed S, Holden S, Park SM, Holder SE, Harrison V, McConnell V, Lam WK, Green AJ, Donnai D, Bitner-Glindzicz M, Donnelly DE, Nellaker C, Taylor MS, FitzPatrick DR (2014) Genetic heterogeneity in Cornelia de Lange syndrome (CdLS) and CdLS-like phenotypes with observed and predicted levels of mosaicism. J Med Genet 51(10):659–668. https://doi.org/10.1136/jmedgenet-2014-102573 3. Aref-Eshghi E, Bend EG, Colaiacovo S, Caudle M, Chakrabarti R, Napier M, Brick L, Brady L, Carere DA, Levy MA, Kerkhof J, Stuart A, Saleh M, Beaudet AL, Li C, Kozenko M, Karp N, Prasad C, Siu VM, Tarnopolsky MA, Ainsworth PJ, Lin H, Rodenhiser DI, Krantz ID, Deardorff MA, Schwartz CE, Sadikovic B (2019) Diagnostic utility of genome-wide DNA methylation testing in genetically unsolved individuals with suspected hereditary conditions. Am J Hum Genet 104(4):685–700. https://doi.org/10.1016/j.ajhg.2019.03.008 4. Aref-Eshghi E, Kerkhof J, Pedro VP, Barat-Houari M, Ruiz- Pallares N, Andrau JC, Lacombe D, Van-Gils J, Fergelot P, Dubourg C, Sadikovic B (2020) Evaluation of DNA methylation EpiSigns for diagnosis and phenotype correlations in 42 Mendelian neurodevelopmental disorders. Am J Hum Genet (in press) 5. Baquero-Montoya C, Gil-Rodriguez MC, Teresa-Rodrigo ME, Hernandez-Marcos M, Bueno-Lozano G, Bueno-Martinez I, Remeseiro S, Fernandez-Hernandez R, Bassecourt-Serra M, Rodriguez de Alba M, Queralt E, Losada A, Puisac B, Ramos FJ, Pie J (2014) Could a patient with SMC1A duplication be classified as a human cohesinopathy? Clin Genet 85(5):446–451. https://doi.org/10.1111/cge.12194
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|