1. Artin E, Tate J. Class Field Theory. New York: W A. Benjamin, 1967
2. Browkin J, Schinzel A. On Sylow 2-subgroups of % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC % vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz % ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqipC0xg9qqqrpepC0xbb % L8F4rqqrFfpeea0xe9Wqpe0xc9q8qqaqFn0dXdir-xcvk9pIe9q8qq % aq-dir-f0-yqaqVeLsFr0-vr0-vr0db8meaabaqaciGacaGaaeqaba % WaaqaafaaakeaacqWGlbWsdaWgaaWcbaGaeGOmaidabeaatuuDJXwA % K1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaGGbaOGae8NdX-0aaSbaaS % qaaiabdAeagbqabaaaaa!4D37! $$ K_2 \mathcal{O}_F $$ for quadratic number fields F. J Reine Angew Math, 1982, 331: 104–113
3. Browkin J. On the p-rank of the tame kernel of algebraic number fields. J Reine Angew Math, 1992, 432: 135–149
4. Browkin J. Tame kernels of cubic cyclic fields. Math Comp, 2005, 74: 967–999
5. Calssels J W, Fröhlich A. Algebriac Number Theory. Washington, D. C: Springer, 1967