Novel insights on acetylcholinesterase inhibition by Convolvulus pluricaulis, scopolamine and their combination in zebrafish

Author:

Karunakaran Kalyani Bindu,Thiyagaraj Anand,Santhakumar KirankumarORCID

Abstract

AbstractAcetylcholinesterase (AChE) inhibitors increase the retention of acetylcholine (ACh) in synapses. Although they alleviate cognitive deficits in Alzheimer’s disease, their limited benefits warrant investigations of plant extracts with similar properties. We studied the anti-AChE activity of Convolvulus pluricaulis (CP) in a zebrafish model of cognitive impairment induced by scopolamine (SCOP). CP is a perennial herb with anti-amnesiac and anxiolytic properties. It contains alkaloid, anthocyanin, coumarin, flavonoid, phytosterol and triterpenoid components. Isoxazole (ISOX) was used as a positive control for AChE inhibition. CP-treated 168 hpf larvae showed a similar pattern of AChE inhibition (in the myelencephalon and somites) as that of ISOX-treated larvae. CP was superior to ISOX as evidenced by the retention of avoidance response behavior in adult zebrafish. Molecular docking studies indicated that ISOX binds Ser203 of the catalytic triad on the human AChE. The active components of CP—scopoletin and kaempferol—were bound by His447 of the catalytic triad, the anionic subsite of the catalytic center, and the peripheral anionic site. This suggested the ability of CP to mediate both competitive and non-competitive modes of inhibition. Surprisingly, SCOP showed AChE inhibition in larvae, possibly mediated via the choline-binding sites. CP + SCOP induced a concentration-dependent increase in AChE inhibition and ACh depletion. Abnormal motor responses were observed with ISOX, CP, ISOX + SCOP, and CP + SCOP, indicative of undesirable effects on the peripheral cholinergic system. Our study proposes the examination of CP, SCOP, and CP + SCOP as potential AChE inhibitors for their ability to modulate cognitive deficits.

Funder

Science and Engineering Research Board

Department of Biotechnology , Ministry of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Organic Chemistry,Plant Science,Pharmacology,Toxicology,Biochemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3