Author:
Dinh Hai Q.,Gaur A.,Gupta Indivar,Singh Abhay K.,Singh Manoj Kumar,Tansuchat Roengchai
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory
Reference30 articles.
1. Cao, Y.-L., Cao, Y., Dinh, H.Q., Fu, F.-W., Gao, J., Sriboonchitta, S.: Constacyclic codes of length $$np^s$$ over $${\mathbb{F}}_{p^m} + u{\mathbb{F}}_{p^m}$$. Adv. Math. Commun. 12, 231–262 (2018)
2. Cao, Y.-L., Cao, Y., Dinh, H.Q., Fu, F.-W., Gao, J., Sriboonchitta, S.: A class of repeated-root constacyclic codes over $${\mathbb{F}}_{p^m}[u]/\langle u^e \rangle$$ of Type $$2$$. Finite Fields Appl. 55, 238–267 (2019)
3. Cao, Y.-L., Cao, Y., Dinh, H.Q., Jitman, S.: An explicit representation and enumeration for self-dual cyclic codes over $${\mathbb{F}}_{2^m}+u{\mathbb{F}}_{2^m}$$ of length $$2^s$$. Discrete Math. 342, 2077–2091 (2019)
4. Cao, Y.-L., Cao, Y., Dinh, H.Q., Fu, F.-W., Gao, J., Sriboonchitta, S.: A class of linear codes of length $$2$$ over finite chain rings. J. Algebra Appl. 19, 2050103.1-15 (2020)
5. Cao, Y.-L., Cao, Y., Dinh, H.Q., Fu, F.-W., Ma, F.: Construction and enumeration for self-dual cyclic codes of even length over $${\mathbb{F}}_{2^m} + u{\mathbb{F}}_{2^m}$$. Finite Fields Appl. 61, (2020). (in press)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献