Exploring implications of Trace (Inversion) formula and Artin algebras in extremal combinatorics

Author:

Pardo Luis M.

Abstract

AbstractThis note is just a modest contribution to prove several classical results in Combinatorics from notions of Duality in some Artinian K-algebras (mainly through the Trace Formula), where K is a perfect field of characteristics not equal to 2. We prove how several classic combinatorial results are particular instances of a Trace (Inversion) Formula in finite $$\mathbb {Q}$$ Q -algebras. This is the case with the Exclusion-Inclusion Principle (in its general form, both with direct and reverse order associated to subsets inclusion). This approach also allows us to exhibit a basis of the space of null t-designs, which differs from the one described in Theorem 4 of Deza and Frankl (Combinatorica 2:341–345, 1982). Provoked by the elegant proof (which uses no induction) in Frankl and Pach (Eur J Comb 4:21–23, 1983) of the Sauer–Shelah–Perles Lemma, we produce a new one based only in duality in the $$\mathbb {Q}$$ Q -algebra $$\mathbb {Q}[V_n]$$ Q [ V n ] of polynomials functions defined on the zero-dimensional algebraic variety of subsets of the set $$[n]:=\{1,2,\ldots , n\}$$ [ n ] : = { 1 , 2 , , n } . All results are equally true if we replace $$\mathbb {Q}[V_n]$$ Q [ V n ] by $$K[V_n]$$ K [ V n ] , where K is any perfect field of characteristics $$\not =2$$ 2 . The article connects results from two fields of mathematical knowledge that are not usually connected, at least not in this form. Thus, we decided to write the manuscript in a self-contained survey-like style, although it is not a survey paper at all. Readers familiar with Commutative Algebra probably know most of the proofs of the statements described in section 2. We decided to include these proofs for those potential readers not so familiar with this framework.

Funder

Universidad de Cantabria

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3