Author:
Guenda Kenza,Gulliver T. Aaron
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory
Reference31 articles.
1. Abualrub, T., Ghrayeb, A., Nian Zeng, X.: Construction of cyclic codes over $$GF(4)$$ G F ( 4 ) for DNA computing. J. Frankl. Inst. 343(4–5), 448–457 (2006)
2. Abualrub, T., Siap, I.: Cyclic codes over the rings $$\mathbb{Z}_2+u\mathbb{Z}_2$$ Z 2 + u Z 2 and $$\mathbb{Z}_2+u\mathbb{Z}_2 + u^2\mathbb{Z}_2$$ Z 2 + u Z 2 + u 2 Z 2 . Des. Codes Crypt. 42(3), 273–287 (2007)
3. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)
4. Adleman, L.M., Rothmund, P.W.K., Roweis, S., Winfree, E.: On applying molecular computation to the data encryption standard. In: Proceedings of the International DIMACS Meeting on DNA Computers (1996)
5. Bachoc, C.: Application of coding theory to the construction of modular lattices. J. Comb. Theory Ser. A 78, 92–119 (1997)
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. DNA codes over $$GR(2^{3},d)[X]/\langle X^{2},2X \rangle$$;Applicable Algebra in Engineering, Communication and Computing;2024-07-13
2. On reversible DNA codes over the ring $${\mathbb {Z}}_4[u,v]/\langle u^2-2,uv-2,v^2,2u,2v\rangle$$ based on the deletion distance;Applicable Algebra in Engineering, Communication and Computing;2024-07-09
3. Application of (σ,δ)-cyclic codes in DNA codes over a non-chain ring;International Journal of Biomathematics;2024-07-02
4. On reversibility problem in DNA bases over a class of rings;Applied Mathematics in Science and Engineering;2024-05-29
5. DNA multi-secret sharing schemes based on linear codes over $${\mathbb {Z}}_{4} \times R$$;Journal of Applied Mathematics and Computing;2023-12