Author:
Bayer Tomas,Mészáros Tamás,Rónyai Lajos,Szabó Tibor
Abstract
AbstractThe projective norm graphs are central objects to extremal combinatorics. They appear in a variety of contexts, most importantly they provide tight constructions for the Turán number of complete bipartite graphs $$K_{t,s}$$
K
t
,
s
with $$s>(t-1)!$$
s
>
(
t
-
1
)
!
. In this note we deepen their understanding further by determining their automorphism group.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory
Reference50 articles.
1. Alon, N., Krivelevich, M., Sudakov, B.: MaxCut in $$H$$-Free graphs. Comb. Probab. Comput. 14, 629–647 (2005)
2. Alon, N., Krivelevich, M., Sudakov, B.: Turán numbers of bipartite graphs and related Ramsey-type questions. Comb. Probab. Comput. 12, 477–494 (2003)
3. Alon, N., Moran, S., Yehudayoff, A.: Sign Rank, VC dimension and spectral gaps, In: Feldman, V., Rakhlin, A., Shamir, O. (eds.) Proceedings of COLT’16, Proceedings of Machine Learning Research, vol. 49, pp. 47–80. (2016). (Also: Mathematicheskii Sbornik, 208:4–41, 2017.)
4. Alon, N., Rödl, V.: Sharp bounds for some multicolor Ramsey numbers. Combinatorica 25(2), 125–141 (2005)
5. Alon, N., Shikhelman, C.: Many T-copies in H-free graphs. J. Comb. Theory Ser. B 121, 146–172 (2016)