Wild Heterotrophic Nitrifying Strain Pseudomonas BT1 Isolated from Kitchen Waste Sludge Restores Ammonia Nitrogen Removal in a Sewage Treatment Plant Shocked by Thiourea

Author:

Deng Jingxuan,Huang Zhenxing,Wang Jinbo,Shan Xiaohong,Shi Wansheng,Ruan WenquanORCID

Abstract

AbstractThiourea is used in agriculture and industry as a metal scavenger, synthetic intermediate, and nitrification inhibitor. However, in wastewater, it can inhibit the nitrification process and induce the collapse of the nitrification system. In such a case, ammonia-oxidizing bacteria (AOB) lose their ability to remove ammonia. We investigated the nitrification system of a 60,000-t/d municipal sewage treatment plant in Nanjing, which collapsed after receiving 5–15 ppm (5–15 mg/L) thiourea. Ammonia nitrogen removal quickly recovered to more than 95% after inoculation with 10 t high-efficiency nitrification sludge, which was collected from a kitchen waste treatment plant. A heterotrophic nitrification strain was isolated from the inoculated sludge and identified as wild Pseudomonas by 16S rDNA sequencing and named “BT1.” Based on thiourea tolerance tests, BT1 can tolerate a thiourea content of more than 500 ppm. For comparison, the in situ process was imitated by the simulation system, and the wastewater shocked by 10 ppm thiourea could still meet the emission standard after adding 1% (V/V) BT1. High-throughput sequencing analysis was applied to study microbial succession during thiourea shock loading. The results showed that Hydrogenophaga and Thiobacillus grew with the growth of BT1. Pseudomonas BT1 was used for a 6,000-t/d printed circuit board (PCB) wastewater treatment system, the nitrification system returned to normal in 15 days, and the degradation rate stabilized at more than 95%.

Funder

major science and technology program for water pollution control and treatment

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology,Applied Microbiology and Biotechnology,Biochemistry,General Medicine,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3