Alternative procedure to verify the H–V diagram after external installations on helicopters

Author:

Battipede ManuelaORCID,Di Caprio Raffaele,Bleyer Manfred,Vazzola Matteo

Abstract

AbstractCertification of external installations on helicopters, for modifications for which CS27/29.865 is not applicable, often requires the showing of compliance of paragraph CS XX.79—limiting height-speed envelope—which might imply, ultimately, a certain degree of H–V testing. Due to the implications on safety during the investigation of the H–V curve, a preliminary analytical investigation is advisable, to understand whether H–V test can be drastically reduced. Analytical investigation, though, is usually based on the extensive use of simulation data, based on validated dynamic mathematical models, which are usually not available to the applicant. The authors recently proposed an alternative method, based on the analysis of a set of flight tests, which is meant to assess quantitatively the different phases of the physical/mechanical phenomena related to the emergency maneuver performed by the pilot as a consequence of a power loss, within or in the proximity of the H–V curve. More in details, the analysis of the autorotation phenomenology reveals that the maneuver is made up by different phases and dedicated tests have been proposed to assess each of these phases. The whole test campaign is hence meant to gain a thorough insight of how, and specifically in which part of the maneuver, the external modification could affect the helicopter H–V characteristic. Depending on this substantiation, H–V testing can be avoided or drastically reduced, limiting the investigation to a few meaningful points. The proposed method has been recently assessed on an external basket installation, making use of purposely developed Flight Instrumentation and post-processing tools. More in details, results and conclusions are based on the analysis of static and dynamic flight parameters, acquired with a non-intrusive Flight Test Instrumentation, which monitors and correlates cockpit parameters and flight commands, following a back-to-back approach (i.e., pre- and post-modification). The method demonstrated was witnessed by EASA and found acceptable as an alternative method for showing of compliance to the applicable requirements.

Funder

Politecnico di Torino

Publisher

Springer Science and Business Media LLC

Subject

Aerospace Engineering,Transportation

Reference16 articles.

1. Commission Regulation (EU) 2015/1039, amending Regulation (EU) No. 748/2012

2. EASA CM No.: CM–21.A-D-002 Issue 01, ‘External Installations on Helicopters’, 27 September 2019

3. EASA CM No.: CM-HS-004 Issue 01 ‘CS 27/29.865 Safety considerations covering External Loads’, 25 July 2016

4. FAA AC 27–1B, Chg 8, Certification of Normal Category Rotorcraft, 29th June 2018

5. https://www.easa.europa.eu/sites/default/files/dfu/Flight%20Test%20Categories%20table%20of%20examples%20rev5.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3