Comparison of shock-buffet dynamics on a supercritical airfoil with and without a pitching degree of freedom

Author:

Scharnowski SvenORCID,Accorinti Alessandro,Korthäuer Tim,Kähler Christian J.

Abstract

AbstractWith the goal of understanding the dynamics of the transonic flow around an OAT15A airfoil model, velocity field measurements were performed by means of high repetition rate particle image velocimetry. The experiments were performed at free-stream Mach numbers from 0.70 to 0.77 and at a Reynolds number of Re$$_\textrm{c}\approx 3\times 10^6$$ c 3 × 10 6 . The variation of the Mach number allowed for an investigation in the pre-buffet, buffet and close to buffet-offset regime. A fixed version and a spring mounted version of the model were used to investigate the effect of the pitching degree of freedom on the shock buffet. The dominant structural frequency of the airfoil’s pitch motion was adjusted to be in the range of the natural buffet frequency of the flow with inhibited pitching motion of the model. Flow field measurements with an acquisition rate of $$4\,$$ 4  kHz allowed for the detection and analysis of the shape and the motion of the compression shock. With released pitching degree of freedom, shock buffet started at a lower Mach number and showed a larger amplitude for the shock oscillation. Furthermore, the shock motion appeared more harmonic compared to the model without pitching degree of freedom. For a Mach number of $$M_\infty =0.72$$ M = 0.72 and 0.74, the change of the angle of attack and the shock location correlated strongly with each other. From the measurements, the phase lag between both quantities during the coupled motion could be determined. From the correlation of the shock position at different heights, it can be concluded that the shock motion is controlled by events at the shock foot. The movement of the upper shock part is only a reaction to the movement of the lower part.

Funder

HORIZON EUROPE European Research Council

Universität der Bundeswehr München

Publisher

Springer Science and Business Media LLC

Subject

Aerospace Engineering,Transportation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3