Engine thrust model determination and analysis using a large operational flight database

Author:

Deiler ChristophORCID

Abstract

AbstractDifferent engine thrust models are developed from operational flight data with limited a priori knowledge as part of a novel process for aircraft flight performance model determination. The given big data problem is solved by application of fundamental engineering knowledge and a specific data evaluation strategy. The resulting smart data approach is fundamentally different from existing artificial intelligence methods to solve such big data problems. A linear, a local-linear and a complex nonlinear thrust model are determined on the example of a given large database of operational flights with Airbus A 320neo aircraft. Even with limited information about the actual engine thrust from the available data, the resulting models allow to (well) predict the engine thrust characteristics within the required flight envelope. In addition, a temperature correction is predicted for the thrust model results to further enhance the model’s accuracy. Finally, the characteristics of the different thrust model implementations, evaluation results and thrust prediction quality are discussed.

Funder

Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)

Publisher

Springer Science and Business Media LLC

Subject

Aerospace Engineering,Transportation

Reference17 articles.

1. European Commission. Flightpath 2050 Europe’s Vision for Aviation. Katalog KI-31-11-098-EN-C, European Union, Luxemburg, 2011. https://doi.org/10.2777/50266

2. Kühne, C.G., Scholz, M. and Abdelmoula, F.: LNAS - a pilot assistance system for energy-optimal approaches using existing aircraft-infrastructure. In: Advanced Aircraft Efficiency in a Global Air Transport System Conference (AEGATS) 2018, Toulouse, France, October 23rd–25th 2018. Association Aéronautique et Astronautique de France (3AF)

3. Abdelmoula, F. and Scholz, M.: LNAS - a pilot assistance system for low-noise approaches with minimal fuel consumption. Belo Horizonte, Brazil, September 2018. 31st Congress of the International Council of the Aeronautical Sciences (ICAS)

4. Ghazi, G., Botez, R.M.: Identification and validation of an engine performance database model for the flight management system. J. Aerosp. Inf. Syst. 16(8), 307–326 (2019). https://doi.org/10.2514/1.I010663

5. Simmons, B.M.: System identification for propellers at high incidence angles, aiaa 2021–1190. Virtual Event, January 11th–15th and 19th–21st,: AIAA SciTech Forum, American Institute of Aeronautics and Astronautics. Inc. (AIAA). (2021). https://doi.org/10.2514/6.2021-1190

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3