A framework for the bi-level optimization of a generic transport aircraft fuselage using aeroelastic loads

Author:

Sinha KautukORCID,Klimmek Thomas

Abstract

AbstractThe aeroelastic loads and design processes at the German Aerospace Center, Institute of Aeroelasticity in the framework of multi-disciplinary optimization are constantly evolving. New developments have been made in the in-house model generation tool ModGen, which allow us to create detailed fuselage models for preliminary design. As a part of the subsequent developments to integrate the fuselage structure in our aeroelastic design process, a new framework for optimizing the fuselage structure has been developed. The process is based on a bi-level optimization approach which follows a global–local optimization methodology to simplify a large optimization problem. A sub-structuring procedure is used to define stiffened panels as independent structures for local optimization. The panels are sized with stress and buckling constraints with consideration of several aeroelastic load cases. Furthermore, in this paper, we present a physical sub-structure grouping process which enables reduced number of panel optimizations and saves considerable computational effort with little compromise in the solution accuracy.

Funder

Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)

Publisher

Springer Science and Business Media LLC

Subject

Aerospace Engineering,Transportation

Reference26 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3