Time-efficient simulations of fighter aircraft weapon bay

Author:

Rajkumar KarthickORCID,Tangermann Eike,Klein Markus,Ketterl Sebastian,Winkler Andreas

Abstract

AbstractA cavity flow exhibits aero-acoustic coupling between the separated shear layer and reflecting waves within the walls of the cavity, which leads to emergence of dominant modes. It is of primary importance that this flow mechanism inside the cavity is understood to provide insights and control the relevant parameters and that it can be properly predicted using state-of-the-art CFD tools. In this study, an open-cavity configuration with doors attached on the sides and a length-to-depth ratio of $$\mathbf{5}.7 $$ 5 . 7 have been studied numerically using the TAU code developed by the German Aerospace Center for transonic flows with three simulation methods such as DES with wall functions and SST-SAS with resolved wall flow or wall function techniques. The free-stream conditions investigated are Mach number (Ma) $$\mathbf{0}.8 $$ 0 . 8 with Reynolds number (Re) $$\mathbf{12} \times \mathbf{10} ^\mathbf{6 }$$ 12 × 10 6 . The Rossiter modes occurring in the cavity due to the acoustic feedback mechanism have been numerically computed and validated. The SST-SAS model is around 90% more computationally efficient compared to the hybrid RANS-LES model providing excellent accuracy in predicting the Rossiter modes. The SST-SAS model with wall functions is 50% more computationally efficient than wall-resolving SAS simulations showing good behaviour in predicting modal frequencies and shapes, with further scope for improvement in the spectral magnitude levels.

Funder

Airbus Defence and Space

Universität der Bundeswehr München

Publisher

Springer Science and Business Media LLC

Subject

Aerospace Engineering,Transportation

Reference22 articles.

1. Lawson, S.J., Barakos, G.N.: Review of numerical simulations for high-speed, turbulent cavity flows. Prog. Aerosp. Sci. 47(3), 186–216 (2011). https://doi.org/10.1016/j.paerosci.2010.11.002

2. Rossiter, J.E.: Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. http://repository.tudelft.nl/view/aereports/uuid:a38f3704-18d9-4ac8-a204-14ae03d84d8c/ (1964)

3. Heller, H.H., Holmes, D.G., Covert, E.E.: Flow-induced pressure oscillations in shallow cavities. J. Sound Vib. 18, 545–553 (1971)

4. Handa, T., Miyachi, H., Kakuno, H., Ozaki, T., Maruyama, S.: Modeling of a feedback mechanism in supersonic deep-cavity Flows. AIAA J. 53(2), 420–425 (2015). https://doi.org/10.2514/1.J053184

5. Henschaw, M.J.d.C.: M219 Cavity Case in Verification and Validation Data for Computational Unsteady Aerodynamics, vol. 323 (2000)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3