Aeroelastic behaviour of a wing with over-the-wing mounted UHBR engine

Author:

Neuert N.ORCID,Dinkler D.

Abstract

AbstractThe aeroelastic behaviour of a wing with an over-the-wing pylon-mounted ultra-high bypass ratio engine and high-lift devices is studied with a reduced-order model. Wing, pylon and engine structures are reduced separately using the modal approach and described by their natural frequencies and modes. The characteristic aerodynamic loads are investigated with steady and unsteady flow simulations of a two-dimensional profile section. These results indicate possible heave instabilities at strongly negative angles of attack. Three-dimensional effects are taken into account using an adapted lifting line theory according to Prandtl. Due to high circulations resulting from the high-lift systems, the effective angles of attack are in the range of the potential instabilities. The substructures and aerodynamic loads are coupled in modal space. For the wing without three-dimensional effects, the bending instability occurs at the corresponding negative angles of attack. Even though there is potential for improvement, including the three-dimensional effects shifts the endagered area to possible operation points.

Funder

Deutsche Forschungsgemeinschaft

Technische Universität Braunschweig

Publisher

Springer Science and Business Media LLC

Subject

Aerospace Engineering,Transportation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting wing-pylon-nacelle configuration flutter characteristics using adaptive continuation method;Advances in Aerodynamics;2023-07-20

2. Aeroelastic Instabilities of Wings with Active High-Lift Devices—A Reduced-Order Model;Notes on Numerical Fluid Mechanics and Multidisciplinary Design;2020-10-18

3. Design of Active High Lift Wing Configurations Via Fluid-Structure Interaction Simulation;Notes on Numerical Fluid Mechanics and Multidisciplinary Design;2020-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3