Abstract
AbstractLiving in a seasonal environment requires periodic changes in animal physiology, morphology and behaviour. Winter phenotype of small mammals living in Temperate and Boreal Zones may differ considerably from summer one in multiple traits that enhance energy conservation or diminish energy loss. However, there is a considerable variation in the development of winter phenotype among individuals in a population and some, representing the non-responding phenotype (non-responders), are insensitive to shortening days and maintain summer phenotype throughout a year. Differences in energy management associated with the development of different winter phenotypes should be accompanied by changes in antioxidant defence capacity, leading to effective protection against oxidative stress resulting from increased heat production in winter. To test it, we analysed correlation of winter phenotypes of Siberian hamsters (Phodopus sungorus) with facultative non-shivering thermogenesis capacity (NST) and oxidative status. We found that in both phenotypes acclimation to winter-like conditions increased NST capacity and improved antioxidant defence resulting in lower oxidative stress (OS) than in summer, and females had always lower OS than males. Although NST capacity did not correlate with the intensity of OS, shortly after NST induction responders had lower OS than non-responders suggesting more effective mechanisms protecting from detrimental effects of reactive oxygen metabolites generated during rewarming from torpor. We suggest that seasonal increase in antioxidant defence is programmed endogenously to predictively prevent oxidative stress in winter. At the same time reactive upregulation of antioxidant defence protects against reactive oxygen species generated during NST itself. It suggests that evolution of winter phenotype with potentially harmful characteristics was counterbalanced by the development of protective mechanisms allowing for the maintenance of phenotypic adjustments to seasonally changing environment.
Publisher
Springer Science and Business Media LLC
Subject
Endocrinology,Animal Science and Zoology,Biochemistry,Ecology, Evolution, Behavior and Systematics,Physiology
Reference134 articles.
1. Adjeitey CN-K, Mailloux RJ, deKemp RA, Harper M-E (2013) Mitochondrial uncoupling in skeletal muscle by UCP1 augments energy expenditure and glutathione content while mitigating ROS production. Am J Physiol 305:E405–E415
2. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922
3. Anchordoquy HC, Lynch GR (2000) Timing of testicular recrudescence in Siberian hamsters is unaffected by pinealectomy or long-day photoperiod after 9 weeks in short days. J Biol Rhythms 15:406–416
4. Astaeva MD, Klichkhanov NK (2009) Oxidative modification of proteins and blood antioxidant activity of ground squirrels during induced awakening from hibernation. Biology Bulletin 36:562–567
5. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献