Energy expenditure and body composition in a hibernator, the alpine marmot

Author:

Ruf ThomasORCID,Michel M.ORCID,Frey-Roos F.ORCID,Flatz S.ORCID,Tataruch F.ORCID

Abstract

AbstractVisceral organs and tissues of 89 free-living alpine marmots (Marmota marmota) shot during a population control program in Switzerland, were collected. Between emergence from hibernation in April to July, the gastrointestinal tract (stomach to colon) gained 51% of mass and the liver mass increased by 24%. At the same time, the basal metabolic rate (BMR), determined with a portable oxygen analyzer, increased by 18%. The organ masses of the digestive system (stomach, small intestine, caecum, large intestine) were all significantly correlated with BMR. Interestingly, the mass of abdominal white adipose tissue (WAT) and of the remaining carcass (mainly skin and bones) were also significantly correlated with BMR. These results indicate that the gastrointestinal tract and organs involved in digestive function are metabolically expensive. They also show that it is costly to maintain even tissues with low metabolic rate such as WAT, especially if they are large. Heart and kidneys and especially brain and lungs did not explain a large proportion of the variance in BMR. Marmots increased the uptake of fat prior to hibernation, both by selective feeding and enhanced gastrointestinal capacity. Large fat reserves enable marmots to hibernate without food intake and to reproduce in spring, but at the cost of an elevated BMR. We predict that climate changes that disturb energy accumulation in summer, increase energy expenditure in winter, or delay the emergence from hibernation in spring, such as the occurrence of storms with increasing frequency, will increase mortality in alpine marmots.

Funder

Austrian Science Fund

University of Veterinary Medicine Vienna

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology,Animal Science and Zoology,Biochemistry,Ecology, Evolution, Behavior and Systematics,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3