Energetic savings and cardiovascular dynamics of a marine euryhaline fish (Myoxocephalus scorpius) in reduced salinity

Author:

Sundell ErikaORCID,Morgenroth Daniel,Ekström Andreas,Brijs Jeroen,Axelsson Michael,Gräns Albin,Sandblom Erik

Abstract

AbstractFew studies have addressed how reduced water salinity affects cardiovascular and metabolic function in marine euryhaline fishes, despite its relevance for predicting impacts of natural salinity variations and ongoing climate change on marine fish populations. Here, shorthorn sculpin (Myoxocephalus scorpius) were subjected to different durations of reduced water salinity from 33 to 15 ppt. Routine metabolic rate decreased after short-term acclimation (4–9 days) to 15 ppt, which corresponded with similar reductions in cardiac output. Likewise, standard metabolic rate decreased after acute transition (3 h) from 33 to 15 ppt, suggesting a reduced energetic cost of osmoregulation at 15 ppt. Interestingly, gut blood flow remained unchanged across salinities, which contrasts with previous findings in freshwater euryhaline teleosts (e.g., rainbow trout) exposed to different salinities. Although plasma osmolality, [Na+], [Cl] and [Ca2+] decreased in 15 ppt, there were no signs of cellular osmotic stress as plasma [K+], [hemoglobin] and hematocrit remained unchanged. Taken together, our data suggest that shorthorn sculpin are relatively weak plasma osmoregulators that apply a strategy whereby epithelial ion transport mechanisms are partially maintained across salinities, while plasma composition is allowed to fluctuate within certain ranges. This may have energetic benefits in environments where salinity naturally fluctuates, and could provide shorthorn sculpin with competitive advantages if salinity fluctuations intensify with climate change in the future.

Funder

Svenska Forskningsrådet Formas

Helge Ax:son Johnsons Stiftelse

University of Gothenburg

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology,Animal Science and Zoology,Biochemistry,Ecology, Evolution, Behavior and Systematics,Physiology

Reference56 articles.

1. Altinok I, Grizzle JM (2003) Effects of low salinities on oxygen consumption of selected euryhaline and stenohaline freshwater fish. J World Aquac Soc 34:113–117

2. Bindoff NL, Cheung WWL, Kairo JG, Arístegui J, Guinder VA, Hallberg R, Hilmi N, Jiao N, Karim MS, Levin L et al (2019) Changing ocean, marine ecosystems, and dependent communities. In: Pörtner HO, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM (eds) IPCC special report on the ocean and cryosphere in a changing climate, in press.

3. Bœuf G, Payan P (2001) How should salinity influence fish growth? Comp Biochem Physiol C 130:411–423

4. Bone Q, Moore RH (2008) Fishes and their habitats. In: Owen E (ed) Biology of fishes, 3rd edn. Taylor and Francis group, New York, pp 35–60

5. Brijs J, Axelsson M, Gräns A, Pichaud N, Olsson C, Sandblom E (2015) Increased gastrointestinal blood flow: an essential circulatory modification for euryhaline rainbow trout (Oncorhynchus mykiss) migrating to sea. Sci Rep 5:10430

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3