Multi-fixed point numerical conformal bootstrap: a case study with structured global symmetry

Author:

Dowens Matthew T.,Hooley Chris A.ORCID

Abstract

Abstract In large part, the future utility of modern numerical conformal bootstrap depends on its ability to accurately predict the existence of hitherto unknown non-trivial conformal field theories (CFTs). Here we investigate the extent to which this is possible in the case where the global symmetry group has a product structure. We do this by testing for signatures of fixed points using a mixed-correlator bootstrap calculation with a minimal set of input assumptions. This ‘semi-blind’ approach contrasts with other approaches for probing more complicated groups, which ‘target’ known theories with additional spectral assumptions or use the saturation of the single-correlator bootstrap bound as a starting point. As a case study, we select the space of CFTs with product-group symmetry O(15) ⊗ O(3) in d = 3 dimensions. On the assumption that there is only one relevant scalar (ℓ = 0) singlet operator in the theory, we find a single ‘allowed’ region in our chosen space of scaling dimensions. The scaling dimensions corresponding to two known large-N critical theories, the Heisenberg and the chiral ones, lie on or very near the boundary of this region. The large-N antichiral point lies well outside the ‘allowed’ region, which is consistent with the expectation that the antichiral theory is unstable, and thus has an additional relevant scalar singlet operator. We also find a sharp kink in the boundary of the ‘allowed’ region at values of the scaling dimensions that do not correspond to the (N, M ) = (3, 15) instance of any large-N -predicted O(N ) ⊗ O(M ) critical theory.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3