OPE and a low-energy theorem in QCD-like theories

Author:

Becchetti MatteoORCID,Bochicchio Marco

Abstract

Abstract We verify, both perturbatively and nonperturbatively asymptotically in the ultraviolet (UV), a special case of a low-energy theorem of the NSVZ type in QCD-like theories, recently derived in Phys. Rev. D 95 (2017) 054010, that relates the logarithmic derivative with respect to the gauge coupling, or the logarithmic derivative with respect to the renormalization-group (RG) invariant scale, of an n-point correlator of local operators in one side to an n + 1-point correlator with the insertion of TrF 2 at zero momentum in the other side. Our computation involves the operator product expansion (OPE) of the scalar glueball operator, TrF 2, in massless QCD, worked out perturbatively in JHEP 12 (2012) 119 — and in its RG-improved form in the present paper — by means of which we extract both the perturbative divergences and the nonperturbative UV asymptotics in both sides. We also discuss the role of the contact terms in the OPE, both finite and divergent, discovered some years ago in JHEP 12 (2012) 119, in relation to the low-energy theorem. Besides, working the other way around by assuming the low-energy theorem for any 2-point correlator of a multiplicatively renormalizable gauge-invariant operator, we compute in a massless QCD-like theory the corresponding perturbative OPE to the order of g 2 and nonperturbative asymptotics. The low-energy theorem has a number of applications: to the renormalization in asymptotically free QCD-like theories, both perturbatively and nonperturbatively in the large-N ’t Hooft and Veneziano expansions, and to the way the open/closed string duality may or may not be realized in the would-be solution by canonical string theories for QCD-like theories, both perturbatively and in the ’t Hooft large-N expansion. Our computations will also enter further developments based on the low-energy theorem.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3