Flipped SU(5): unification, proton decay, fermion masses and gravitational waves

Author:

King Stephen F.ORCID,Leontaris George K.ORCID,Zhou Ye-LingORCID

Abstract

Abstract We study supersymmetric (SUSY) flipped SU(5) × U(1) unification, focussing on its predictions for proton decay, fermion masses and gravitational waves. We performed a two-loop renormalisation group analysis and showed that the SUSY flipped SU(5) model predicts a high GUT scale MGUT> 1016 GeV. We also investigated the restrictions on the MBL scale which is associated with the U(1)χ breaking scale. We found that the MBL scale can vary in a broad region with negligible or little effect on the value of MGUT. Proton decay in this model is induced by dimension-6 operators only. The dimension-5 operator induced by SUSY contribution is suppressed due to the missing partner mechanism. We found that the partial decay width pπ0e+ is high suppressed, being at least one order of magnitude lower than the future Hyper-K sensitivity. We also studied fermion (including neutrino) masses and mixings which can also influence proton decay. We presented two scenarios of flavour textures to check the consistency of the results with fermion masses and mixing. The BL gauge breaking leads to the generation of cosmic strings. The BL scale here is not constrained by gauge coupling unification. If this scale is very close that of GUT breaking, strings can be unstable due to the decay to monopole-antimonople pair. Such metastable strings can be used to explain the NANOGrav signals of stochastic gravitational wave background, which may be interpreted here as resulting from the decay of metastable cosmic strings.

Publisher

Springer Science and Business Media LLC

Reference51 articles.

1. H. Georgi and S.L. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].

2. NANOGrav collaboration, The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background, Astrophys. J. Lett. 951 (2023) L8 [arXiv:2306.16213] [INSPIRE].

3. EPTA and InPTA: collaborations, The second data release from the European Pulsar Timing Array — III. Search for gravitational wave signals, Astron. Astrophys. 678 (2023) A50 [arXiv:2306.16214] [INSPIRE].

4. D.J. Reardon et al., Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array, Astrophys. J. Lett. 951 (2023) L6 [arXiv:2306.16215] [INSPIRE].

5. H. Xu et al., Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I, Res. Astron. Astrophys. 23 (2023) 075024 [arXiv:2306.16216] [INSPIRE].

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3