Abstract
Abstract
We study supersymmetric (SUSY) flipped SU(5) × U(1) unification, focussing on its predictions for proton decay, fermion masses and gravitational waves. We performed a two-loop renormalisation group analysis and showed that the SUSY flipped SU(5) model predicts a high GUT scale MGUT> 1016 GeV. We also investigated the restrictions on the MB−L scale which is associated with the U(1)χ breaking scale. We found that the MB−L scale can vary in a broad region with negligible or little effect on the value of MGUT. Proton decay in this model is induced by dimension-6 operators only. The dimension-5 operator induced by SUSY contribution is suppressed due to the missing partner mechanism. We found that the partial decay width p → π0e+ is high suppressed, being at least one order of magnitude lower than the future Hyper-K sensitivity. We also studied fermion (including neutrino) masses and mixings which can also influence proton decay. We presented two scenarios of flavour textures to check the consistency of the results with fermion masses and mixing. The B − L gauge breaking leads to the generation of cosmic strings. The B − L scale here is not constrained by gauge coupling unification. If this scale is very close that of GUT breaking, strings can be unstable due to the decay to monopole-antimonople pair. Such metastable strings can be used to explain the NANOGrav signals of stochastic gravitational wave background, which may be interpreted here as resulting from the decay of metastable cosmic strings.
Publisher
Springer Science and Business Media LLC
Reference51 articles.
1. H. Georgi and S.L. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].
2. NANOGrav collaboration, The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background, Astrophys. J. Lett. 951 (2023) L8 [arXiv:2306.16213] [INSPIRE].
3. EPTA and InPTA: collaborations, The second data release from the European Pulsar Timing Array — III. Search for gravitational wave signals, Astron. Astrophys. 678 (2023) A50 [arXiv:2306.16214] [INSPIRE].
4. D.J. Reardon et al., Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array, Astrophys. J. Lett. 951 (2023) L6 [arXiv:2306.16215] [INSPIRE].
5. H. Xu et al., Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I, Res. Astron. Astrophys. 23 (2023) 075024 [arXiv:2306.16216] [INSPIRE].
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献