Abstract
Abstract
We consider generic freeze-in processes for generation of Dark Matter, together with the consequent re-thermalization of the Standard Model fluid. We find that Dark Matter inherits the Standard Model adiabatic inhomogeneities on the cosmological scales probed by current observations, that were super-horizon during freeze-in. Thereby, freeze-in satisfies the bounds on iso-curvature perturbations.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference19 articles.
1. L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-in production of FIMP dark matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].
2. J. McDonald, Thermally generated gauge singlet scalars as selfinteracting dark matter, Phys. Rev. Lett. 88 (2002) 091304 [hep-ph/0106249] [INSPIRE].
3. N. Bernal et al., The dawn of FIMP dark matter: a review of models and constraints, Int. J. Mod. Phys. A 32 (2017) 1730023 [arXiv:1706.07442] [INSPIRE].
4. Planck collaboration, Planck 2018 results. I. Overview and the cosmological legacy of Planck, Astron. Astrophys. 641 (2020) A1 [arXiv:1807.06205] [INSPIRE].
5. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Dark matter isocurvature from curvature;Physical Review D;2024-03-05
2. Impact of freeze-in on dark matter isocurvature;Journal of Cosmology and Astroparticle Physics;2023-11-01