Abstract
Abstract
The LHC lifetime frontier will probe dark sector in near future, and the visible decay searches at fixed-target experiments have been exploring dark sector. Composite asymmetric dark matter with dark photon portal is a promising framework explaining the coincidence problem between dark matter and visible matter. Dark strong dynamics provides rich structure in the dark sector: the lightest dark nucleon is the dark matter, while strong annihilation into dark pions depletes the symmetric components of the dark matter. Dark photons alleviate cosmological problems. Meanwhile, dark photons make dark hadrons long-lived in terrestrial experiments. Moreover, the dark hadrons are produced through the very same dark photon. In this study, we discuss the visible decay searches for composite asymmetric dark matter models. For a few GeV dark nucleons, the LHC lifetime frontier, MATHUSLA and FASER, has a potential to discover their decay when kinetic mixing angle of dark photon is ϵ ≳ 10−4. On the other hand, fixed-target experiments, in particular SeaQuest, will have a great sensitivity to dark pions with a mass below GeV and with kinetic mixing ϵ ≳ 10−4 in addition to the LHC lifetime frontier. These projected sensitivities to dark hadrons in dark photon parameter space are comparable with the future sensitivities of dark photon searches, such as Belle-II and LHCb.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference167 articles.
1. R. Essig, P. Schuster and N. Toro, Probing dark forces and light hidden sectors at low-energy e+e- colliders, Phys. Rev. D 80 (2009) 015003 [arXiv:0903.3941] [INSPIRE].
2. M. Reece and L.-T. Wang, Searching for the light dark gauge boson in GeV-scale experiments, JHEP 07 (2009) 051 [arXiv:0904.1743] [INSPIRE].
3. BaBar collaboration, Search for dimuon decays of a light scalar boson in radiative transitions ϒ → γA0, Phys. Rev. Lett. 103 (2009) 081803 [arXiv:0905.4539] [INSPIRE].
4. J. D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].
5. B. Batell, M. Pospelov and A. Ritz, Exploring portals to a hidden sector through fixed targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [INSPIRE].
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献