Abstract
Abstract
Computation of topological charges of the Schwarzschild and charged black holes in AdS in canonical and grand canonical ensembles allows for a classification of the phase transition points via the Bragg-Williams off-shell free energy. We attempt a topological classification of the critical points and the equilibrium phases of the dual gauge theory via a phenomenological matrix model, which captures the features of the $$\mathcal{N}$$ = 4, SU(N) Super Yang-Mills theory on S3 at finite temperature at large N. With minimal modification of parameters, critical points of the matrix model at finite chemical potential can be classified as well. The topological charges of locally stable and unstable dynamical phases of the system turn out to be opposite to each other, totalling to zero, and this matches the analysis in the bulk.
Publisher
Springer Science and Business Media LLC
Reference72 articles.
1. J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].
2. J.M. Bardeen, B. Carter and S.W. Hawking, The four laws of black hole mechanics, Commun. Math. Phys. 31 (1973) 161 [INSPIRE].
3. S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
4. A. Sen, Black Hole Entropy Function, Attractors and Precision Counting of Microstates, Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [INSPIRE].
5. LIGO Scientific and VIRGO collaborations, GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett. 118 (2017) 221101 [Erratum ibid. 121 (2018) 129901] [arXiv:1706.01812] [INSPIRE].
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献