Author:
Canning James A. L.,Deppisch Frank F.,Pei Wenna
Abstract
Abstract
Tritium beta-decay is the most promising approach to measure the absolute masses of active light neutrinos in the laboratory and in a model-independent fashion. The development of Cyclotron Radiation Emission Spectroscopy techniques and the use of atomic tritium has the potential to improve the current limits by an order of magnitude in future experiments. In this paper, we analyse the potential sensitivity of such future searches to keV-mass sterile neutrinos and exotic interactions of either the active or sterile neutrinos. We calculate the relevant decay distributions in both energy and angle of the emitted electron with respect to a potential polarisation of the tritium, including the interference with the Standard Model case as well as incorporating relevant final state corrections for atomic tritium. We present projected sensitivities on the active-sterile neutrino mixing and effective coupling constants of exotic currents, demonstrating the potential to probe New Physics in tritium experiments.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference58 articles.
1. Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
2. E.W. Otten and C. Weinheimer, Neutrino mass limit from tritium beta decay, Rept. Prog. Phys. 71 (2008) 086201 [arXiv:0909.2104] [INSPIRE].
3. M. Kleesiek et al., β-Decay Spectrum, Response Function and Statistical Model for Neutrino Mass Measurements with the KATRIN Experiment, Eur. Phys. J. C 79 (2019) 204 [arXiv:1806.00369] [INSPIRE].
4. KATRIN collaboration, Direct neutrino-mass measurement with sub-electronvolt sensitivity, Nature Phys. 18 (2022) 160 [arXiv:2105.08533] [INSPIRE].
5. Project 8 collaboration, Overview of Project 8 and Progress Towards Tritium Operation, J. Phys. Conf. Ser. 1342 (2020) 012040 [arXiv:1710.01826] [INSPIRE].
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献