Abstract
Abstract
We investigate the fine-grained entropy of the de Sitter cosmological horizon. Starting from three-dimensional pure de Sitter space, we consider a partial reduction approach, which supplies an auxiliary system acting as a heat bath both at $$ \mathcal{I} $$
I
+ and inside the static patch. This allows us to study the time-dependent entropy of radiation collected for both observers in the out-of-equilibrium Unruh-de Sitter state, analogous to black hole evaporation for a cosmological horizon. Central to our analysis in the static patch is the identification of a weakly gravitating region close to the past cosmological horizon; this is suggestive of a relation between observables at future infinity and inside the static patch. We find that in principle, while the meta-observer at $$ \mathcal{I} $$
I
+ naturally observes a pure state, the static patch observer requires the use of the island formula to reproduce a unitary Page curve. However, in practice, catastrophic backreaction occurs at the Page time, and neither observer will see unitary evaporation.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference68 articles.
1. G.W. Gibbons and S.W. Hawking, Cosmological Event Horizons, Thermodynamics, and Particle Creation, Phys. Rev. D 15 (1977) 2738 [INSPIRE].
2. E. Witten, Quantum gravity in de Sitter space, in Strings 2001: International Conference, Mumbai India (2001) [hep-th/0106109] [INSPIRE].
3. N. Goheer, M. Kleban and L. Susskind, The Trouble with de Sitter space, JHEP 07 (2003) 056 [hep-th/0212209] [INSPIRE].
4. M.K. Parikh and E.P. Verlinde, de Sitter holography with a finite number of states, JHEP 01 (2005) 054 [hep-th/0410227] [INSPIRE].
5. M.K. Parikh, I. Savonije and E.P. Verlinde, Elliptic de Sitter space: dS/Z(2), Phys. Rev. D 67 (2003) 064005 [hep-th/0209120] [INSPIRE].
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献