Abstract
Abstract
Form factors in planar 𝒩 = 4 super-Yang-Mills theory have a dual description in terms of periodic Wilson loops. This duality maps the multi-collinear expansion of the former to an operator product expansion of the latter. The coefficients of this expansion are decomposed in terms of several elementary building blocks and can be determined at finite ’t Hooft coupling using bootstrap and integrability techniques. Some of these building blocks are known from an analogous expansion of scattering amplitudes. In addition to these, the expansion for form factors includes a new type of building block, called form factor transitions, that encode information about the local operator. In the present paper, we consider the form factor of the chiral part of the stress-tensor supermultiplet. We bootstrap the corresponding form factor transitions of two-particle flux-tube states and use them to predict the leading term in the collinear expansion at finite coupling. The transitions we find can be expressed in terms of a quantity that previously appeared in a seemingly unrelated context, namely the octagon kernel. Lastly, we use a factorized ansatz to determine the multi-particle form factor transitions at finite coupling, which we use to predict the first subleading term in the collinear expansion. A perfect match is found between our predictions and the available perturbative data.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献