Author:
Tarusov A. A.,Ushakov K. A.,Vasiliev M. A.
Abstract
Abstract
Analysis of the first-order corrections to higher-spin equations is extended to homotopy operators involving shift parameters with respect to the spinor Y variables, the argument of the higher-spin connection ω(Y) and the argument of the higher-spin zero-form C(Y). It is shown that a relaxed uniform (y + p)-shift and a shift by the argument of ω(Y) respect the proper form of the free higher-spin equations and constitute a one-parametric class of vertices that contains those resulting from the conventional (no shift) homotopy. A pure shift by the argument of ω(Y) is shown not to affect the one-form higher-spin field W in the first order and, hence, the form of the respective vertices.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献