Author:
Karananas Georgios K.,Kehagias Alex,Taskas John
Abstract
Abstract
We derive a novel four-dimensional black hole with planar horizon that asymptotes to the linear dilaton background. The usual growth of its entanglement entropy before Page’s time is established. After that, emergent islands modify to a large extent the entropy, which becomes finite and is saturated by its Bekenstein-Hawking value in accordance with the finiteness of the von Neumann entropy of eternal black holes. We demonstrate that viewed from the string frame, our solution is the two-dimensional Witten black hole with two additional free bosons. We generalize our findings by considering a general class of linear dilaton black hole solutions at a generic point along the σ-model renormalization group (RG) equations. For those, we observe that the entanglement entropy is “running” i.e. it is changing along the RG flow with respect to the two-dimensional worldsheet length scale. At any fixed moment before Page’s time the aforementioned entropy increases towards the infrared (IR) domain, whereas the presence of islands leads the running entropy to decrease towards the IR at later times. Finally, we present a four-dimensional charged black hole that asymptotes to the linear dilaton background as well. We compute the associated entanglement entropy for the extremal case and we find that an island is needed in order for it to follow the Page curve.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference78 articles.
1. G. Dvali and C. Gomez, Black Hole’s Quantum N-Portrait, Fortsch. Phys. 61 (2013) 742 [arXiv:1112.3359] [INSPIRE].
2. G. Dvali and C. Gomez, Black Hole’s 1/N Hair, Phys. Lett. B 719 (2013) 419 [arXiv:1203.6575] [INSPIRE].
3. G. Dvali and C. Gomez, Black Hole Macro-Quantumness, arXiv:1212.0765 [INSPIRE].
4. G. Dvali, Non-Thermal Corrections to Hawking Radiation Versus the Information Paradox, Fortsch. Phys. 64 (2016) 106 [arXiv:1509.04645] [INSPIRE].
5. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, The entropy of Hawking radiation, arXiv:2006.06872 [INSPIRE].
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献