On the particle picture of Emergence

Author:

Hattab JarodORCID,Palti EranORCID

Abstract

Abstract The Emergence Proposal is the idea that all kinetic terms for fields in quantum gravity are emergent in the infrared from integrating out towers of states. It predicts that in a supersymmetric string theory context, the tree-level prepotential terms can be recovered precisely by integrating out a tower of non-perturbative states. In this note we present a new perspective, and associated quantitative evidence, for this proposal. We argue that the tree-level kinetic terms arise from integrating out the ultraviolet physics of each of the states in the tower. This ultraviolet physics is associated to extended objects, and cannot be captured by a standard particle Schwinger integral. Instead, we argue that it should be captured by a Schwinger-like integral where the proper time is analytically continued, and a contour is taken around the origin. This maps to certain integral representations for the moduli space periods, and indeed one recovers the tree-level prepotential exactly. This interpretation suggests that the ultraviolet physics which gives the leading contribution to the prepotential is localised on point intersections of the extended objects. We also argue that over special loci in moduli space there can exist a particle picture of the states, and an associated simple particle Schwinger integral, which leads to the full tree-level prepotential. These are loci with special degenerations, such as the singular limit of the resolved conifold.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emergence in string theory and Fermi gases;Journal of High Energy Physics;2024-07-16

2. Emergence of R4-terms in M-theory;Journal of High Energy Physics;2024-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3