Abstract
Abstract
We use QCD kinetic theory to compute photon production in the chemically equilibrating Quark-Gluon Plasma created in the early stages of high-energy heavy-ion collisions. We do a detailed comparison of pre-equilibrium photon rates to the thermal photon production. We show that the photon spectrum radiated from a hydrodynamic attractor evolution satisfies a simple scaling form in terms of the specific shear viscosity η/s and entropy density dS/dζ ∼ (Tτ1/3)3/2∞. We confirm the analytical predictions with numerical kinetic theory simulations. We use the extracted scaling function to compute the pre-equilibrium photon contribution in $$ \sqrt{s_{NN}} $$
s
NN
= 2.76 TeV 0–20% PbPb collisions. We demonstrate that our matching procedure allows for a smooth switching from pre-equilibrium kinetic to thermal hydrodynamic photon production. Finally, our publicly available implementation can be straightforwardly added to existing heavy ion models.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献