Quantum nature of Wigner function for inflationary tensor perturbations

Author:

Gong Jinn-Ouk,Seo Min-Seok

Abstract

Abstract We study the Wigner function for the inflationary tensor perturbation defined in the real phase space. We compute explicitly the Wigner function including the contributions from the cubic self-interaction Hamiltonian of tensor perturbations. Then we argue that it is no longer an appropriate description for the probability distribution in the sense that quantum nature allows negativity around vanishing phase variables. This comes from the non-Gaussian wavefunction in the mixed state as a result of the non-linear interaction between super- and sub-horizon modes. We also show that this is related to the explicit infrared divergence in the Wigner function, in contrast to the trace of the density matrix.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Boltzmann equations for astrophysical Stochastic Gravitational Wave Backgrounds scattering off of massive objects;Journal of Cosmology and Astroparticle Physics;2023-02-01

2. Quantum Cosmological Gravitational Waves?;Handbook of Quantum Gravity;2023

3. Quantum corrections to the primordial tensor spectrum: open EFTs & Markovian decoupling of UV modes;Journal of High Energy Physics;2022-08-23

4. Instability of de Sitter space under thermal radiation in different vacua;Journal of Cosmology and Astroparticle Physics;2021-10-01

5. Eternal inflation in light of Wheeler-DeWitt equation;Journal of Cosmology and Astroparticle Physics;2020-11-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3