Author:
Diamond Melissa D.,Kaplan David E.
Abstract
Abstract
We present current direct and astrophysical limits on the cosmological abundance of black holes with extremal magnetic charge. Such black holes do not Hawking radiate, allowing those normally too light to survive to the present to do so. The dominant constraints come from white dwarf destruction for low and intermediate masses (2 × 10−5 g – 4 × 1012 g) and Galactic gas cloud heating for heavier masses (> 4 × 1012 g). Extremal magnetic black holes may catalyze proton decay. We derive robust limits — independent of the catalysis cross section — from the effect this has on white dwarfs. We discuss other bounds from neutron star heating, solar neutrino production, binary formation and annihilation into gamma-rays, and magnetic field destruction. Stable magnetically charged black holes can assist in the formation of neutron star mass black holes.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献