Author:
Ellis John,Karliner Marek,Praszalowicz Michal
Abstract
Abstract
We discuss the stability and masses of topological solitons in QCD and strongly-interacting models of electroweak symmetry breaking with arbitrary combinations of two inequivalent Lagrangian terms of fourth order in the field spatial derivatives. We find stable solitons for only a restricted range of the ratio of these combinations, in agreement with previous results, and we calculate the corresponding soliton masses. In QCD, the experimental constraints on the fourth-order terms force the soliton to resemble the original Skyrmion solution. However, this is not necessarily the case in strongly-interacting models of electroweak symmetry breaking, in which a non-Skyrmion-like soliton is also possible. This possibility will be constrained by future LHC measurements and dark matter experiments. Current upper bounds on the electroweak soliton mass range between 18 and 59 TeV, which would be reduced to 4.6 to 8.1 TeV with the likely sensitivity of LHC data to the fourth-order electroweak Lagrangian parameters.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献